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LETTER TO THE EDITOR 

Stimulation of superconductivity by an antiferromagnetic 
ordering in heavy-fermion compounds 

A V Goltsev 
l o s e  Physico-Technical Institute, Polytechnicheskaya 26, St Petenburg 194021, Russia 

Received 1 April 1992 

AbsIracL Using the high degenerate model we show thal an antiferromagnetic ordering 
of localized moments in the coherenl Kondo State slimulates supermnduclivity in heay-  
fermion compounds. We find also that the antiferromagnetic momenl per f-atom is 
anomalously small. 

Many experimental investigations of heavy- fermion compounds such as UBe,,, UPt,, 
URu,Si, and CeCu,S& have shown that the superconductivity of these compounds 
is remarkable and is supposed to occur via an electron mechanism rather than a 
phonon one (see [l-51). At temperatures below the Kondo temperature, TK, these 
compounds are in the heavy-fermion ground state characterized by an enhanced 
electron mass on the Fermi surface (for example, m* 200m, for UPt, [6], m* = 
m,, for UBe,, [7]). At a lower temperature, TN, these compounds undergo an 
antiferromagnetic transition. This antiferromagnetic state is also unusual since in this 
state the antiferromagnetic moments of U-atoms are anomalously small (for example, 
p = 0.02pB for UPt, [SI, p 0 . 0 4 ~ ~  for URu,Si, [9,10]). Then at a temperature 
T, - 0.1 TN these compounds become superconducting. 

In the present letter we discuss the problem of an interplay between the Kondo 
effect, antiferromagnetism and superconductivity. For this purpose we use a new 
model based on the Coqblin-Schrieffer lattice Hamiltonian. In our previous paper 
[ll] we have used the model to study magnetic properties of heavy-fermion com- 
pounds. It has been shown that the coherent Kondo state is unstable against an 
antiferromagnetic ordering of localized moments when the Fermi surface of the con- 
duction band possesses nesting. Here we shall show that in the framework of our 
model at T < TN < TK the antiferromagnetic state is characterized by a very 
small antiferromagnetic moment per f-atom. Kondo screening is the reason for this 
phenomena. Introducing an additional exchange interaction between conduction elec- 
trons and localized f-electrons, we study superconductivity in the framework of the 
mean-field theory. We End that the antiferromagnetic state stimulates superconduc- 
tivity. What is more the superconductivity can arise only at T, < TN. It is the 
antiferromagnetic ordering that leads to superconductivity. 

We study a system described by the Hamiltonian 

(1) 
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where c:~ and cok are the creation and annihilation operators for conduction eleo 
tmns with wave number k and spin quantum number U .  The spin quantum numbers 
U and r] run from - j  to j ;  N = 2 j  + 1 is the spin degeneracy. f$; and f m i  are 
the creation and annihilation operators for f-electrons localized at points Ri. The 
operators Sf and sf  of moments for f-electrons and c-electrons are given by 

The constraints 

are imposed for each i. At J ,  = J2 = 0, Hamiltonian (1) is equal to the Coqblin- 
Schrieffer Hamiltonian [12]. In the framework of the mean-field theory the exchange 
constant J ,  introduces the Ruderman-Kittel-Kasuya-Yoshida (RKKY)-interaction with 
the characteristic energy po J: where po is the density of states at the Fermi level 
for the  conduction band c k .  The exchange interaction characterized by the constant 
J ,  leads to superconductivity as will be shown below. Here we suppose that the 
constants J, J1 and J2 are positive. 

Using the HubbardStratonovich transformation and taking into account con- 
straints (3), one can write the partition function of model (1) as path integrals over 
the Grassmann variables ct, c, f t ,  f and Bose variables b', 6, +*, +, A', A, A: 

Z = J o ( c t = i t f b * b + * + A ' A X ) . , p ( - - ~ d r  ,?,(I)) 

- (brfzicO, + A:f:,c!,,i + H.c.) + i X ,  (f:;fOi - qo) )  (4) 

where p is the chemical potential. In the high degeneracy limit N > 1 the integration 
over the Bose variables may be performed by using the saddlepoint method. The 
structure of the ground state is determined by the relations of the constants J ,  J ,  
and Jz to each other, the Fermi surface and the space arrangement of the localized 
moments [I l l .  

For simplicity we shall study the system with cubic symmetry in which the G and 
f-sublattices coincide. At first we suppose that the total number of G and f-electrons 
is equal to In, that is nt = n, + qo = 1/2 .  If the exchange constant J is larger 
than J ,  and J2,  then at temperatures T < TK the uniform coherent Kondo state is 
formed (bi = bl = b # 0). This state is characterized by the effective hybridization 
parameter b between c and f-electrons and the effective f-level energy cf = i X i  [13]. 

0 0 
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Figure I. Schematic band Structure diagram at 
different temperatures: (0) the high-temperature 
phase T > TK; (b) the coherenl Kondo state 
TN < T < TK; and (c) the antiferromagnetic 
phase T, < T < TN. 

At T < TK the energy spectrum consists of the two N-fold degenerate bands (see 
figure l(b)) 

2 1/2 
Elk = + ( e k  + et - [ ( c k  - e f ) ’  + 46 ] } 

(5)  
= : ( e k  t cf t [ ( e k  - q)’t 4bZ]1/2}. 

Since nt = 1/2, the low band E l k  is half full. The oper ators f,, and c,, are related 
to the annihilation operators blok and b,,, of the bands (5) by the Bogoliubov 
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transformation 

f o k  = V v k b v o k  
v=1,z 

Ulk = V’k = cos ak 
uZk = -vlk = sin ak 

cot ak = (q - E I k ) / b .  

Let the non-renormalized band satisfy the nesting condition with respect to 
the middle of the band. In measuring the energy at the middle of the band, we can 
write 

E, = - E b - $ ’  (7) 
Below we consider only the simplest case Q = ( * x , f ~ , k r ) .  Using (7) and n, 

= IL?., one can show that the band E,, possesses nesting regarding the Fermi level, 
that is 

Elk - P = -E l r -q  + P (8) 
in such a range of k near k, where electrons have the enhanced mass m* = 
m, cos-’ aF. The nesting (8) leads to the instability of the coherent Kondo state 
with respect to the antiferromagnetic ordering of the localized moments. At T < TK 
the antiferromagnetic state is characterized by the following thermodynamic average 
values 

Jl+i = h; = -JIN-’(sf) = hexp( iQRi)  

+: s Mi = N-’(Sf) = M exp(iQRi)  (9) 

where hi is the spontaneous magnetic field acting on the localized moment S,? [ll]. 
The antiferromagnetic ordering brings about a reconstruction of the energy spectrum 
(5). The bands (5) are split at k lying on the Fermi surface. Instead of two N-fold 
degenerate bands (see figure l(c)) we obtain four families of two fold degenerate 
bands (see figure l(c)) 

U 
*o = z (hm, /m* - JIM) 
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where p = k - Q. At low temperatures, T < TK, we have m* / m  = cos-' aF = 
qo/poto >> 1 [13,14]. The energy To is determined by the equality To = cf - p, and 
at T TK it acts as a universal energy scale [13,14]: 

Equations (10) and (11) are correct at IC near the boundaries of the reduced Brillouin 
band (the points 0, and 0, in figure l(c)). The NCel temperature TN has been 
obtained in [ l l ]  

where a = j(j + 1)/3NZ; A is a certain number parameter which depends weakly 
on the parameters of the model. Solving self--consistently the set of saddle-point 
equations, at T < TN we obtain 

h = TN 

According to (9) and (13), the antiferromagnetic moment per f-atom is equal to 

Ma = gjPBNM 

where Qo = qo N is the total number of f-electrons per f-atom. For UPt, experiment 
yields TN = 5.5 K [8], j = SE and gj = 6/7 [3], Qo = 1. The value of To is not 
exactly known and probably lies in the range 20 K < To < 50 K [3]. For these 
experimental data equation (14) gives 0.028 pB > M ,  > 0.02 pLB. Our estimate is in 
surprisingly good agreement with the experimental result 0.02 pB per U-atom of [8]. 
For URu,Si, TN = 17 K (sec for example [4]). If we use To - SO K (the temperature 
at which the susceptibility and resistivity pass through a maximum [4]) and j = I n ,  
gj = 2, then we obtain Ma = 0.046 pp This result is close to the experimental value 
0.04 pB [9, lo]. 

In the case nt = nC + qo < 1/2 at T < TN, the low antiferromagnetic bands 
C,,, are not completely filled. The value 6 = 1/2 - R, is the number of holes per 
orbital. At 6 # 0 the nesting condition (8) cannot be exact, but at 6 << qoTN/To the 
approximate nesting is sufficient for the development of the antiferromagnetic state 
with Q = ( i = ~ , i = ~ , ? ~ m )  and the energy bands of (10). 

Now we consider the stability of our model with respect to fluctuations Ay and A; 
(see equation (4)). One can find that in the range TN < T < TK the Kondo screening 
suppresses completely the fluctuations A. However, at T < TN the antiferromagnetic 
ordering revives these fluctuations leading to instability of the antiferromagnetic state 
with respect to superconductivity. Considering only the static fluctuation of A; and 
A;, we select from (4) the operator 
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Due to the symn.?try of the system considered we can expect an instability either in 
the channel q = 0 or in the antiferromagnetic channel q = Q. 'b find the instability, 
we transform the f- and c-operators into operators awok  of the bands (10). For 
this purpose we must find a unitary transformation which diagonalizes the effective 
Hamiltonian describing the antiferromagnetic state. The Hamiltonian may be written 
as 

(17) 
U U A:@ = - -h N v v k v p p +  E J I M u u k U p p  

where the functions U, U and operators b are given by (6). Using the perturbation 
theory with respect to the matrix elements A" and A'' up to first order, we obtain 
the spectrum (lo), the unitary transformation and then the following relations between 
operators b,, and operators a l U k  of the low antiferromagnetic bands: 

2 112 

D = [ ( E l ,  - E l k J  + (e) ] . 
Substituting (6) and (18) into (15), one obtains 

U Auk =--A N E ,  

where the operator pF contains all other combinations of the operators a,,k.  To 
derive ( 2 2 )  we have used m*/mo > 1 and the inequality J I M  > h. The insta- 
bility of the antiferromagnetic state with respect to the superconducting transition is 
completely determined by the first term of the operator (20). The operator pF gives 
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a non-singular contribution. Equation (21) shows that the superconducting vertex is 
proportional to the antiferromagnetic moment M .  Thus at T > TN we have A4 
= 0 and there is no superconductivity. The temperature T, of the superconducting 
transition is given by the equation 

(22) 
1 1  

where the vertex renormalization aA,,/aA, follows from (21). In the case T, < 
TN To and N > 1 we find 

where 

!-% = [26ToT~/~qol"~ 

acts as the effective chemical potential for holes in the bands Elk,,. According to 
(23), T, increases rapidly with increasing hole concentration 6. On the other hand, 
increasing 6 results in the violation of the nesting (8) and decreases TN. At large 6 
this process will lead to decreasing T,. It is necessary to note that at finite N the 
&dependence of T, can differ from (23). 

We can assume that if the antiferromagnetic gap tuk  is equal to zero in some 
directions of IC, then the superconducting gap AOk is equal to zero also. This 
assumption allows us to explain the power law temperature-dependence of the specific 
heat of the heavy-fermion compounds at T < T, [14]. 

In conclusion, we have shown that in the framework of the mean-field theory 
(large N-limit) the model (1) has a rich phase diagram which includes a coherent 
Kondo state, magnetically ordered phases and superconductivity. The superconductiv- 
ity is driven by the exchange interaction between conduction electrons and localized 
f-electrons and can occur only at T, < TN < TK, that is in the coherent Kondo state 
with antiferromagnetically ordered localized moments. 
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